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The PdCl,-catalyzed cyclization of amino allylic alcohol 16 gave the cyclized product 17a with excellent diastereoselectivity. The versatility of
compound 17a as the building block for synthesizing cis-2,6-disubstituted piperidine alkaloids has been demonstrated by a total synthesis of
(-)-cassine (1).

A number of the piperidine alkaloids, especially 2,6- cal method for total synthesis is still limited. Stereoselective
disubstituted piperidin-3-ols, have been found abundantly in synthesis of trans-2,6-disubstituted piperidine alkaloids using
nature, and many of them show interesting pharmacological Pd(0)-catalyzed N-alkylation was achieved by Tadano in
activities! For example, prosopinine2) displays local 19934 As to the total synthesis of cis-2,6-disubstituted
anesthetic, analgestic, and antibiotic activitiesmd (—)- piperidine alkaloids, racemic cassine was synthesized by
spectaline (3) shows cytotoxicity (Figure 3L). Bonte and Hasserbufg? and (—)-cassine 1) was ac-
complished by Momose and Oetting using enzymatic optical

_ resolution®®¢ Recently, Hirai reported Pd(Il)-catalyzed

cyclization of piperidines to afford 2-substituted piperidine

HO"-O with excellent diastereoselectivity.
WINNT (—)-Cassine (1) was isolated from the leaves and twigs
H (-)-cassine (1) o) of Cassia excelsand its structure was established in 1963.
HO,, The absolute configuration was determined by W. Y. Rice
H /\/\/\/\/\ﬂ/ (1) Strunz, G. M.; Findlay, J. AThe AlkaloidsBrossi, A., Eds; Academic
(-)-prosopinine (2) o] Press: New York, 1985; Vol. 26, pp 89.
HO... (2) Fodor, G.; Fumeaux, J.-P.; Sankaran,Synthesisl972, 464.
O (3) Bolzani, V. S.; Gunatilaka, A. A. L.; Kingston, D. G.Tetrahedron
TSN 1995,51, 5929.
H ) (4) (a) Tadano, K.; Takao, K.; Nigawara, Y.; Nishio, E.; Takagi, I.;
(-)-spectaline (3) 9 Maeda, K.; Ogawa, SSynlett1993 565. (b) Takao, K.; Nigawara, E.;
Nishio, E.; Takagi, |.; Maeda, K.; Tadano, K.; OgawaT8trahedrorl994,
Figure 1. 50, 5681.

(5) (a) Bonte, ABull Soc. Chim. Fr1981, 11-281. (b) Hasserberg, H.-
A.; Gerlach, H.Ann Chem1989, 255.
. (6) (a) Momose, T.; Toyooka, Nletrahedron Lett1993,34, 5785. (b)
AlthOL_Jgh mUCh Effo'jt has _bee_n_d”eCted _toward tOtaI_ Momose, T.; Toyooka, N.; Jin, MJ. Chem. Soc., Perkin Trans 1097,
synthesis of 2,6-disubstituted piperidine alkaloids, the practi- 2005. (c) Oetting, J.; Holzlkamp, J.; Mayer, H. H.; Pahl, Petrahedron:
Asymmetry1997,8, 477.

T Department of Bioscience and Biotechnology, Faculty of Agriculture, (7) Yokoyama, H.; Otaya, K.; Kobayashi H.; Miyazawa, M.; Yamaguchi,
Shinshu University, 8304 Minami-minowa Kami-ina, Nagano 399-4598, S.; Hirai, Y. Org. Lett.2000,2, 2427.
Japan. (8) Highet, R. JJ. Org. Chem1963,29, 471.
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in 19669 Recently, G. J. Mena-Rejon reported thathows || GGG

antimicrobial activity againsBtaphylococcus aured®We Scheme 2
report here an asymmetric total synthesislofia a dia-
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cyclization reaction would be attractive as a means to 4 - 5 ”
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ﬂ/’ OMOM P a Reagents and conditions: (@BuLi, (HCHO), 71%. (b) Na,
O~ /\// NHs, reflux, 76%. (c) BnBr (1.5 equiv), NaH (2.2 equiv};BwNI
= Z (0.2 equiv), 56%. (d) Ti(Oi-Pg) TBHP, L-(+)-DET, 90%. (e) (i)
16 NHBoc 4 MsClI, E&N; (i) HCIO4, 60 °C, 90%. (f) KCOs, MeOH, 89%. (g)

MOMCI, i-P,NEt, 99%. (h) LiAlH,, THF, 50°C, 96%. (i)p-TsCl,
pyridine, 96%. (j) NaN, DMF, 50°C, 47%. (k) PPk H,O, 81%.
(1) Boc,O, E&N, 81%. (m) Na/NH, 90%.

17aby hydroboration-oxidation of the vinyl group and chain
elongation using Wittig reaction. The 2,6-dialkylated
piperidine ring ofL7awould be formed by Pd(ll)-catalyzed
intramolecular N-alkylation. It was expected that the N-
alkylation would proceed via an intermediateallyl pal-
ladium complex. The key intermediate allylic amino alcohol

16 would be synthesized via a multistep procedure from 1,5- . .
Wou Y zed Vvl HHstep p . hydroxyl group of 11 gave tosylatel2 in 96% yield.

hexadiyne (4).
,:s slr):o r$21 Scheme 2. the kev intermediate allviic amino Transformation ofl2 into azidel3 was achieved in 47%
wnl ' yi : YICamino via1g by using NaN in DMF. Reduction of azidd 3 with

alcohol16 was constructed as follows. Thans,transdiene- PPh—H,0 afforded aminel4, and subsequent protection

diol 5 was prepared using Rosenblum’s procedure in 51% ; .

A : . . of the amino group withert-butoxycarbonyl group afforded
ylneclid I\/Lorc;iben;ylatr:?nfotﬁt;/vghtbler;i?/ri bg;)rrr:]lciieaiyaH, v 15in high yield. Removal of the benzyl group &b with
and a catalytic amount ot tetrabutylammonium 10CIide gave \, i, liqguid ammonia afforded®.

6in 56% yield. Sharpl tri idatior® @fith
m oyle arpiess asymmertic epoxication Allyl alcohol 16 was teated with 5 mol % Pdgin THF

L-(+)-diethyl tartrate gave epoxidgin 90% yield!? which . .
: : at room temperature to afford cyclized mixtude&and17b
showed>98% ee by*H NMR analysis of the correspondin ) ) :
W 0 v ys! ponding in 69% vyield; the ratio ofL.7aand17b was>49:1 (Scheme

Mosher ester derivative. The hydroxyl group of7 was 3)

converted into a mesylate, which was then treated with o ) »
perchloric acid to afford dihydroxy sulfonae* Treatment Switching the catalyst in the above conditions tQRa-
(CH3CN), gavel7aand17bin 51% vyield (the ratio ofL7a

and 17b was also>49:1). On the other hand, Pd(ll) with

with potassium carbonate gave terminal epoxXdda 89%
yield. The secondary hydroxyl group 6fwas protected as

a MOM ether to givel0. Regioselective reduction &0 with
LiAIH 4, and subsequent tosylation of the resulting secondary

(9) Rice, W. Y.; Coke, J. LJ. Org. Chem1966,31, 1010.

(10) Peraza, P. S.; Vallado, M. R.; Loeza, W. B.; Mena‘RejB. J.; bigger ligands such as dppf and BRhd not give any
Quijano, L.Fitoterapia2000,71, 690. i i i

(11) Lennon, .. Rosenbiurd. Am. Chem. Sod 983,105, 1233, cyclized product. The stgreoselec'uve for.mayorﬂ)acould .

(12) Katsuki, T.; Sharpless, K. B. Am. Chem. Sod 980,102, 5974. be explained by assuming that the cyclization proceeds via

S I(|13) (ast?ele' g. IA.;JM%shtl\eAr. Hri S. ﬁmécgembiowl?;?,g% 851221- g) transition state A. The chelation effect between the palladium
ullivan, G. R.; Dale, J. A.; Mosher, H. 3. Org. em ,90, . [ :
(14) Behrens, C. H.; Ko, S. Y. Sharpless, K. B.. Walker, F.J0rg. and oxygen atoms of the allyl alcohol is |mportan.t. This
Chem.1985,50, 5687. tendency may also be counterbalanced by the chelation effect
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between the palladium and the oxygen of the Boc group
favoring this orientation. Transition state B, which leads to

17b, would be a disadvantage because of the steric hindrance

between the Boc group and theallyl palladium complex
(Figure 2). Determination of the relative stereochemistry of
17awas performed by NOE experiments.
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Figure 2.

Hydroboration of17a was carried out with 9-BBN to
afford primary alcoholl8, and subsequent oxidation with

PCC provided the crude aldehyde. The carbon chain elonga-

tion of the piperidine ring appendage at C-6 was ac-
complished by Wittig reaction using 9-decenyl triphenyl-
phosphonium iodide to affortld. Wacker oxidatiot? of the
resulting diene effectively affordezZD, which was subjected
to catalytic hydrogenation in the presence of 5% palladium
on carbon to give saturated prod@dt Finally, deprotection

of the MOM and the Boc groups with a few drops of

(15) Tsuji, J.Synthesisl984, 384.
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concentrated HCI in MeOH gave-§-cassine in quantitative
yield (Scheme 4).
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aRegents and conditions: (a) (i) 9-BBN, from°C to room
temperature; (ii) NaOH, bD,, 96%. (b) (i) PCC; (i) CH=
CH(CH,)sPPR™1~, n-BuLi, —40 °C, 67%. (c) Q, CuCh, PdC},

72%. (d) H, 5% Pd-C, 81%. (e) aqueous HCI, MeOH, 100%.

The optical rotation of synthetit ([o] %% —0.72 (c0.47,
EtOH)) was consistent with that reported for naturélo] %
—0.6 (c8.0, EtOH))8 TheH NMR, *C NMR, IR, and MS
spectra and melting point of synthefit® were also in good
agreement with the reported vall@se?

In conclusion, we have achieved a total synthesis0f (
cassine using a diastereoselective Ra@talyzed cyclization.
The key intermediatd7a can be used as a building block
for synthesizing other cis-2,6-disubstituted piperidine alka-
loids.
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(16) Physical and spectroscopic datafoMp: 54—56°C, [a]2p —0.72
(c 0.47, EtOH)H NMR (500 MHz, CDC}) ¢: 1.15 (3H, d,J = 6.6 Hz),
1.15—1.4 (16H, m), 1.46 (9H, s), 1.48.65 (5H, m), 1.96-1.95 (1H, m),
2.13 (3H, s), 2.41 (2H, f] = 7.4 Hz), 2.55—2.65 (1H, br), 2.80—2.85 (1H,
qd,J = 6.5, 1.5 Hz), 3.59 (1H, br) ppni3C NMR (125 MHz)d: 18.47,
23.88, 25.80, 29.19, 29.40, 29.44, 29.52, 29.56, 29.77, 29.85, 31.99, 36.72,
43.83, 55.94, 57.34, 67.91, 209.33 ppm. HRFABMS {VH*): found,
298.2738; calcd for H3gNO,, 298.2746.
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